Copied to
clipboard

G = C23.626C24order 128 = 27

343rd central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.626C24, C22.3992+ (1+4), C22.3012- (1+4), C4⋊C4.8Q8, C2.32(D4×Q8), C4⋊C4.128D4, C2.77(D46D4), C2.27(Q83Q8), (C22×C4).888C23, (C2×C42).677C22, C22.435(C22×D4), C22.148(C22×Q8), C23.65C23.73C2, C23.81C23.33C2, C2.C42.332C22, C23.63C23.42C2, C2.3(C22.58C24), C2.33(C23.41C23), C2.77(C22.33C24), C2.54(C22.31C24), (C2×C4).72(C2×Q8), (C2×C4).121(C2×D4), (C2×C4).207(C4○D4), (C2×C4⋊C4).439C22, C22.488(C2×C4○D4), (C2×C42.C2).28C2, SmallGroup(128,1458)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.626C24
C1C2C22C23C22×C4C2×C42C23.65C23 — C23.626C24
C1C23 — C23.626C24
C1C23 — C23.626C24
C1C23 — C23.626C24

Subgroups: 340 in 208 conjugacy classes, 104 normal (30 characteristic)
C1, C2 [×7], C4 [×22], C22 [×7], C2×C4 [×14], C2×C4 [×38], C23, C42 [×5], C4⋊C4 [×8], C4⋊C4 [×31], C22×C4 [×3], C22×C4 [×12], C2.C42 [×12], C2×C42, C2×C42 [×2], C2×C4⋊C4 [×6], C2×C4⋊C4 [×14], C42.C2 [×8], C23.63C23 [×2], C23.65C23 [×3], C23.65C23 [×2], C23.81C23 [×6], C2×C42.C2 [×2], C23.626C24

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], Q8 [×4], C23 [×15], C2×D4 [×6], C2×Q8 [×6], C4○D4 [×2], C24, C22×D4, C22×Q8, C2×C4○D4, 2+ (1+4), 2- (1+4) [×3], C22.31C24, C22.33C24, C23.41C23, D46D4, D4×Q8, Q83Q8, C22.58C24, C23.626C24

Generators and relations
 G = < a,b,c,d,e,f,g | a2=b2=c2=1, d2=e2=ba=ab, f2=b, g2=a, ac=ca, ede-1=ad=da, geg-1=ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, gdg-1=abd, fg=gf >

Smallest permutation representation
Regular action on 128 points
Generators in S128
(1 9)(2 10)(3 11)(4 12)(5 69)(6 70)(7 71)(8 72)(13 77)(14 78)(15 79)(16 80)(17 81)(18 82)(19 83)(20 84)(21 85)(22 86)(23 87)(24 88)(25 89)(26 90)(27 91)(28 92)(29 93)(30 94)(31 95)(32 96)(33 97)(34 98)(35 99)(36 100)(37 75)(38 76)(39 73)(40 74)(41 103)(42 104)(43 101)(44 102)(45 107)(46 108)(47 105)(48 106)(49 111)(50 112)(51 109)(52 110)(53 115)(54 116)(55 113)(56 114)(57 119)(58 120)(59 117)(60 118)(61 123)(62 124)(63 121)(64 122)(65 128)(66 125)(67 126)(68 127)
(1 11)(2 12)(3 9)(4 10)(5 71)(6 72)(7 69)(8 70)(13 79)(14 80)(15 77)(16 78)(17 83)(18 84)(19 81)(20 82)(21 87)(22 88)(23 85)(24 86)(25 91)(26 92)(27 89)(28 90)(29 95)(30 96)(31 93)(32 94)(33 99)(34 100)(35 97)(36 98)(37 73)(38 74)(39 75)(40 76)(41 101)(42 102)(43 103)(44 104)(45 105)(46 106)(47 107)(48 108)(49 109)(50 110)(51 111)(52 112)(53 113)(54 114)(55 115)(56 116)(57 117)(58 118)(59 119)(60 120)(61 121)(62 122)(63 123)(64 124)(65 126)(66 127)(67 128)(68 125)
(1 41)(2 42)(3 43)(4 44)(5 38)(6 39)(7 40)(8 37)(9 103)(10 104)(11 101)(12 102)(13 107)(14 108)(15 105)(16 106)(17 111)(18 112)(19 109)(20 110)(21 115)(22 116)(23 113)(24 114)(25 119)(26 120)(27 117)(28 118)(29 123)(30 124)(31 121)(32 122)(33 127)(34 128)(35 125)(36 126)(45 77)(46 78)(47 79)(48 80)(49 81)(50 82)(51 83)(52 84)(53 85)(54 86)(55 87)(56 88)(57 89)(58 90)(59 91)(60 92)(61 93)(62 94)(63 95)(64 96)(65 98)(66 99)(67 100)(68 97)(69 76)(70 73)(71 74)(72 75)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 91 3 89)(2 28 4 26)(5 54 7 56)(6 113 8 115)(9 27 11 25)(10 92 12 90)(13 31 15 29)(14 96 16 94)(17 35 19 33)(18 100 20 98)(21 39 23 37)(22 74 24 76)(30 78 32 80)(34 82 36 84)(38 86 40 88)(41 59 43 57)(42 118 44 120)(45 63 47 61)(46 122 48 124)(49 66 51 68)(50 126 52 128)(53 70 55 72)(58 104 60 102)(62 108 64 106)(65 112 67 110)(69 116 71 114)(73 87 75 85)(77 95 79 93)(81 99 83 97)(101 119 103 117)(105 123 107 121)(109 127 111 125)
(1 19 11 81)(2 82 12 20)(3 17 9 83)(4 84 10 18)(5 96 71 30)(6 31 72 93)(7 94 69 32)(8 29 70 95)(13 87 79 21)(14 22 80 88)(15 85 77 23)(16 24 78 86)(25 66 91 127)(26 128 92 67)(27 68 89 125)(28 126 90 65)(33 119 99 59)(34 60 100 120)(35 117 97 57)(36 58 98 118)(37 123 73 63)(38 64 74 124)(39 121 75 61)(40 62 76 122)(41 109 101 49)(42 50 102 110)(43 111 103 51)(44 52 104 112)(45 113 105 53)(46 54 106 114)(47 115 107 55)(48 56 108 116)
(1 15 9 79)(2 14 10 78)(3 13 11 77)(4 16 12 80)(5 65 69 128)(6 68 70 127)(7 67 71 126)(8 66 72 125)(17 87 81 23)(18 86 82 22)(19 85 83 21)(20 88 84 24)(25 31 89 95)(26 30 90 94)(27 29 91 93)(28 32 92 96)(33 39 97 73)(34 38 98 76)(35 37 99 75)(36 40 100 74)(41 105 103 47)(42 108 104 46)(43 107 101 45)(44 106 102 48)(49 113 111 55)(50 116 112 54)(51 115 109 53)(52 114 110 56)(57 63 119 121)(58 62 120 124)(59 61 117 123)(60 64 118 122)

G:=sub<Sym(128)| (1,9)(2,10)(3,11)(4,12)(5,69)(6,70)(7,71)(8,72)(13,77)(14,78)(15,79)(16,80)(17,81)(18,82)(19,83)(20,84)(21,85)(22,86)(23,87)(24,88)(25,89)(26,90)(27,91)(28,92)(29,93)(30,94)(31,95)(32,96)(33,97)(34,98)(35,99)(36,100)(37,75)(38,76)(39,73)(40,74)(41,103)(42,104)(43,101)(44,102)(45,107)(46,108)(47,105)(48,106)(49,111)(50,112)(51,109)(52,110)(53,115)(54,116)(55,113)(56,114)(57,119)(58,120)(59,117)(60,118)(61,123)(62,124)(63,121)(64,122)(65,128)(66,125)(67,126)(68,127), (1,11)(2,12)(3,9)(4,10)(5,71)(6,72)(7,69)(8,70)(13,79)(14,80)(15,77)(16,78)(17,83)(18,84)(19,81)(20,82)(21,87)(22,88)(23,85)(24,86)(25,91)(26,92)(27,89)(28,90)(29,95)(30,96)(31,93)(32,94)(33,99)(34,100)(35,97)(36,98)(37,73)(38,74)(39,75)(40,76)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120)(61,121)(62,122)(63,123)(64,124)(65,126)(66,127)(67,128)(68,125), (1,41)(2,42)(3,43)(4,44)(5,38)(6,39)(7,40)(8,37)(9,103)(10,104)(11,101)(12,102)(13,107)(14,108)(15,105)(16,106)(17,111)(18,112)(19,109)(20,110)(21,115)(22,116)(23,113)(24,114)(25,119)(26,120)(27,117)(28,118)(29,123)(30,124)(31,121)(32,122)(33,127)(34,128)(35,125)(36,126)(45,77)(46,78)(47,79)(48,80)(49,81)(50,82)(51,83)(52,84)(53,85)(54,86)(55,87)(56,88)(57,89)(58,90)(59,91)(60,92)(61,93)(62,94)(63,95)(64,96)(65,98)(66,99)(67,100)(68,97)(69,76)(70,73)(71,74)(72,75), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,91,3,89)(2,28,4,26)(5,54,7,56)(6,113,8,115)(9,27,11,25)(10,92,12,90)(13,31,15,29)(14,96,16,94)(17,35,19,33)(18,100,20,98)(21,39,23,37)(22,74,24,76)(30,78,32,80)(34,82,36,84)(38,86,40,88)(41,59,43,57)(42,118,44,120)(45,63,47,61)(46,122,48,124)(49,66,51,68)(50,126,52,128)(53,70,55,72)(58,104,60,102)(62,108,64,106)(65,112,67,110)(69,116,71,114)(73,87,75,85)(77,95,79,93)(81,99,83,97)(101,119,103,117)(105,123,107,121)(109,127,111,125), (1,19,11,81)(2,82,12,20)(3,17,9,83)(4,84,10,18)(5,96,71,30)(6,31,72,93)(7,94,69,32)(8,29,70,95)(13,87,79,21)(14,22,80,88)(15,85,77,23)(16,24,78,86)(25,66,91,127)(26,128,92,67)(27,68,89,125)(28,126,90,65)(33,119,99,59)(34,60,100,120)(35,117,97,57)(36,58,98,118)(37,123,73,63)(38,64,74,124)(39,121,75,61)(40,62,76,122)(41,109,101,49)(42,50,102,110)(43,111,103,51)(44,52,104,112)(45,113,105,53)(46,54,106,114)(47,115,107,55)(48,56,108,116), (1,15,9,79)(2,14,10,78)(3,13,11,77)(4,16,12,80)(5,65,69,128)(6,68,70,127)(7,67,71,126)(8,66,72,125)(17,87,81,23)(18,86,82,22)(19,85,83,21)(20,88,84,24)(25,31,89,95)(26,30,90,94)(27,29,91,93)(28,32,92,96)(33,39,97,73)(34,38,98,76)(35,37,99,75)(36,40,100,74)(41,105,103,47)(42,108,104,46)(43,107,101,45)(44,106,102,48)(49,113,111,55)(50,116,112,54)(51,115,109,53)(52,114,110,56)(57,63,119,121)(58,62,120,124)(59,61,117,123)(60,64,118,122)>;

G:=Group( (1,9)(2,10)(3,11)(4,12)(5,69)(6,70)(7,71)(8,72)(13,77)(14,78)(15,79)(16,80)(17,81)(18,82)(19,83)(20,84)(21,85)(22,86)(23,87)(24,88)(25,89)(26,90)(27,91)(28,92)(29,93)(30,94)(31,95)(32,96)(33,97)(34,98)(35,99)(36,100)(37,75)(38,76)(39,73)(40,74)(41,103)(42,104)(43,101)(44,102)(45,107)(46,108)(47,105)(48,106)(49,111)(50,112)(51,109)(52,110)(53,115)(54,116)(55,113)(56,114)(57,119)(58,120)(59,117)(60,118)(61,123)(62,124)(63,121)(64,122)(65,128)(66,125)(67,126)(68,127), (1,11)(2,12)(3,9)(4,10)(5,71)(6,72)(7,69)(8,70)(13,79)(14,80)(15,77)(16,78)(17,83)(18,84)(19,81)(20,82)(21,87)(22,88)(23,85)(24,86)(25,91)(26,92)(27,89)(28,90)(29,95)(30,96)(31,93)(32,94)(33,99)(34,100)(35,97)(36,98)(37,73)(38,74)(39,75)(40,76)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120)(61,121)(62,122)(63,123)(64,124)(65,126)(66,127)(67,128)(68,125), (1,41)(2,42)(3,43)(4,44)(5,38)(6,39)(7,40)(8,37)(9,103)(10,104)(11,101)(12,102)(13,107)(14,108)(15,105)(16,106)(17,111)(18,112)(19,109)(20,110)(21,115)(22,116)(23,113)(24,114)(25,119)(26,120)(27,117)(28,118)(29,123)(30,124)(31,121)(32,122)(33,127)(34,128)(35,125)(36,126)(45,77)(46,78)(47,79)(48,80)(49,81)(50,82)(51,83)(52,84)(53,85)(54,86)(55,87)(56,88)(57,89)(58,90)(59,91)(60,92)(61,93)(62,94)(63,95)(64,96)(65,98)(66,99)(67,100)(68,97)(69,76)(70,73)(71,74)(72,75), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,91,3,89)(2,28,4,26)(5,54,7,56)(6,113,8,115)(9,27,11,25)(10,92,12,90)(13,31,15,29)(14,96,16,94)(17,35,19,33)(18,100,20,98)(21,39,23,37)(22,74,24,76)(30,78,32,80)(34,82,36,84)(38,86,40,88)(41,59,43,57)(42,118,44,120)(45,63,47,61)(46,122,48,124)(49,66,51,68)(50,126,52,128)(53,70,55,72)(58,104,60,102)(62,108,64,106)(65,112,67,110)(69,116,71,114)(73,87,75,85)(77,95,79,93)(81,99,83,97)(101,119,103,117)(105,123,107,121)(109,127,111,125), (1,19,11,81)(2,82,12,20)(3,17,9,83)(4,84,10,18)(5,96,71,30)(6,31,72,93)(7,94,69,32)(8,29,70,95)(13,87,79,21)(14,22,80,88)(15,85,77,23)(16,24,78,86)(25,66,91,127)(26,128,92,67)(27,68,89,125)(28,126,90,65)(33,119,99,59)(34,60,100,120)(35,117,97,57)(36,58,98,118)(37,123,73,63)(38,64,74,124)(39,121,75,61)(40,62,76,122)(41,109,101,49)(42,50,102,110)(43,111,103,51)(44,52,104,112)(45,113,105,53)(46,54,106,114)(47,115,107,55)(48,56,108,116), (1,15,9,79)(2,14,10,78)(3,13,11,77)(4,16,12,80)(5,65,69,128)(6,68,70,127)(7,67,71,126)(8,66,72,125)(17,87,81,23)(18,86,82,22)(19,85,83,21)(20,88,84,24)(25,31,89,95)(26,30,90,94)(27,29,91,93)(28,32,92,96)(33,39,97,73)(34,38,98,76)(35,37,99,75)(36,40,100,74)(41,105,103,47)(42,108,104,46)(43,107,101,45)(44,106,102,48)(49,113,111,55)(50,116,112,54)(51,115,109,53)(52,114,110,56)(57,63,119,121)(58,62,120,124)(59,61,117,123)(60,64,118,122) );

G=PermutationGroup([(1,9),(2,10),(3,11),(4,12),(5,69),(6,70),(7,71),(8,72),(13,77),(14,78),(15,79),(16,80),(17,81),(18,82),(19,83),(20,84),(21,85),(22,86),(23,87),(24,88),(25,89),(26,90),(27,91),(28,92),(29,93),(30,94),(31,95),(32,96),(33,97),(34,98),(35,99),(36,100),(37,75),(38,76),(39,73),(40,74),(41,103),(42,104),(43,101),(44,102),(45,107),(46,108),(47,105),(48,106),(49,111),(50,112),(51,109),(52,110),(53,115),(54,116),(55,113),(56,114),(57,119),(58,120),(59,117),(60,118),(61,123),(62,124),(63,121),(64,122),(65,128),(66,125),(67,126),(68,127)], [(1,11),(2,12),(3,9),(4,10),(5,71),(6,72),(7,69),(8,70),(13,79),(14,80),(15,77),(16,78),(17,83),(18,84),(19,81),(20,82),(21,87),(22,88),(23,85),(24,86),(25,91),(26,92),(27,89),(28,90),(29,95),(30,96),(31,93),(32,94),(33,99),(34,100),(35,97),(36,98),(37,73),(38,74),(39,75),(40,76),(41,101),(42,102),(43,103),(44,104),(45,105),(46,106),(47,107),(48,108),(49,109),(50,110),(51,111),(52,112),(53,113),(54,114),(55,115),(56,116),(57,117),(58,118),(59,119),(60,120),(61,121),(62,122),(63,123),(64,124),(65,126),(66,127),(67,128),(68,125)], [(1,41),(2,42),(3,43),(4,44),(5,38),(6,39),(7,40),(8,37),(9,103),(10,104),(11,101),(12,102),(13,107),(14,108),(15,105),(16,106),(17,111),(18,112),(19,109),(20,110),(21,115),(22,116),(23,113),(24,114),(25,119),(26,120),(27,117),(28,118),(29,123),(30,124),(31,121),(32,122),(33,127),(34,128),(35,125),(36,126),(45,77),(46,78),(47,79),(48,80),(49,81),(50,82),(51,83),(52,84),(53,85),(54,86),(55,87),(56,88),(57,89),(58,90),(59,91),(60,92),(61,93),(62,94),(63,95),(64,96),(65,98),(66,99),(67,100),(68,97),(69,76),(70,73),(71,74),(72,75)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,91,3,89),(2,28,4,26),(5,54,7,56),(6,113,8,115),(9,27,11,25),(10,92,12,90),(13,31,15,29),(14,96,16,94),(17,35,19,33),(18,100,20,98),(21,39,23,37),(22,74,24,76),(30,78,32,80),(34,82,36,84),(38,86,40,88),(41,59,43,57),(42,118,44,120),(45,63,47,61),(46,122,48,124),(49,66,51,68),(50,126,52,128),(53,70,55,72),(58,104,60,102),(62,108,64,106),(65,112,67,110),(69,116,71,114),(73,87,75,85),(77,95,79,93),(81,99,83,97),(101,119,103,117),(105,123,107,121),(109,127,111,125)], [(1,19,11,81),(2,82,12,20),(3,17,9,83),(4,84,10,18),(5,96,71,30),(6,31,72,93),(7,94,69,32),(8,29,70,95),(13,87,79,21),(14,22,80,88),(15,85,77,23),(16,24,78,86),(25,66,91,127),(26,128,92,67),(27,68,89,125),(28,126,90,65),(33,119,99,59),(34,60,100,120),(35,117,97,57),(36,58,98,118),(37,123,73,63),(38,64,74,124),(39,121,75,61),(40,62,76,122),(41,109,101,49),(42,50,102,110),(43,111,103,51),(44,52,104,112),(45,113,105,53),(46,54,106,114),(47,115,107,55),(48,56,108,116)], [(1,15,9,79),(2,14,10,78),(3,13,11,77),(4,16,12,80),(5,65,69,128),(6,68,70,127),(7,67,71,126),(8,66,72,125),(17,87,81,23),(18,86,82,22),(19,85,83,21),(20,88,84,24),(25,31,89,95),(26,30,90,94),(27,29,91,93),(28,32,92,96),(33,39,97,73),(34,38,98,76),(35,37,99,75),(36,40,100,74),(41,105,103,47),(42,108,104,46),(43,107,101,45),(44,106,102,48),(49,113,111,55),(50,116,112,54),(51,115,109,53),(52,114,110,56),(57,63,119,121),(58,62,120,124),(59,61,117,123),(60,64,118,122)])

Matrix representation G ⊆ GL6(𝔽5)

400000
040000
001000
000100
000010
000001
,
100000
010000
004000
000400
000010
000001
,
100000
010000
001000
000100
000040
000004
,
110000
340000
000100
004000
000010
000001
,
220000
030000
003000
000300
000032
000012
,
100000
010000
003000
000200
000010
000024
,
300000
420000
001000
000400
000040
000004

G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,3,0,0,0,0,1,4,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[2,0,0,0,0,0,2,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,1,0,0,0,0,2,2],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,1,2,0,0,0,0,0,4],[3,4,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4] >;

32 conjugacy classes

class 1 2A···2G4A···4R4S···4X
order12···24···44···4
size11···14···48···8

32 irreducible representations

dim1111122244
type++++++-+-
imageC1C2C2C2C2D4Q8C4○D42+ (1+4)2- (1+4)
kernelC23.626C24C23.63C23C23.65C23C23.81C23C2×C42.C2C4⋊C4C4⋊C4C2×C4C22C22
# reps1256244413

In GAP, Magma, Sage, TeX

C_2^3._{626}C_2^4
% in TeX

G:=Group("C2^3.626C2^4");
// GroupNames label

G:=SmallGroup(128,1458);
// by ID

G=gap.SmallGroup(128,1458);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,336,253,344,758,723,184,1571,346,80]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=1,d^2=e^2=b*a=a*b,f^2=b,g^2=a,a*c=c*a,e*d*e^-1=a*d=d*a,g*e*g^-1=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,g*d*g^-1=a*b*d,f*g=g*f>;
// generators/relations

׿
×
𝔽